Course Introduction

Mark Dunning

27/07/2015

Welcome!

About us

- Admin at CRUK
 - Victoria, Helen
- Genetics
 - Paul, Gabry, Cathy

Thanks to Cancer Research Uk!

Admin

• Lunch, tea / coffee breaks provided

- Workshop dinner on Thursday @ Downing College
 - no other evening meals
- wifi passwords available
- Course Materials
 - http://bioinformatics-core-shared-training.github.io/cruk-bioinf-sschool/ (http://bioinformatics-core-shared-training.github.io/cruk-bioinf-sschool/)
 - and on the computers at your desk
- Anything else, just ask!

About the Course

- We will tell about 'best practice' tools that we use in daily work as Bioinformaticians
- · You will (probably) not come away being an expert
- We cannot teach you everything about NGS data
 - plus, it is a fast-moving field
- RNA and ChIP only
 - much of the initial processing is the same for other assays
- However, we hope that you will
 - Understand how your data are processed
 - Be able to explore your data no programming required
 - Increase confidence with R and Bioconductor
 - Be able to explore new technologies, methods, tools as they come out

Further disclaimer

You'll probably see this quote in every stats course you go to

To consult the statistician after an experiment is finished is often merely to ask him to conduct a post mortem examination. He can perhaps say what the experiment died of.". R.A. Fisher, 1938

If you haven't designed your experiment properly, then all the Bioinformatics we teach you won't help: Make friends with your local statistician

Course Outline

Day 1

- Recap of R
- Introduce the Bioconductor project
- Hands-on experience with NGS data
 - IGV
 - FastQC
 - Alignment

Day 2

- Data structures for NGS analysis in R
- Statistical theory behind RNA-seq analysis
- RNA-seq intro
- Aligning and counting for RNA-seq

Day 3

- Differential expression analysis for RNA-seq
- Annotating RNA-seq results
- Using Genome Browsers

Day 4

- Downstream analysis of RNA-seq
- Intro to ChIP-seq
- QA and analysis of ChIP data
- Gala Dinner

Day 5

- Downstream analysis of ChIP-seq
- Reproducible Research
- Invited Talks
 - Jonathan Cairns
 - Peter Van Loo
- End of course :(

Crash-course in R

Support for R

- Online forums
- Local user groups
- Documentation via ? or help.start()

- browseVignettes() to see package user guides ('vignettes')
- Get into the habit of using these
 - or **google**

RStudio

- Rstudio is a free environment for R
- · Convenient menus to access scripts, display plots
- Still need to use command-line to get things done
- · Developed by some of the leading R programmers

Typical tasks in an R analysis

- Read some data from a .csv or .txt file
 - R creates some representation of the data
- Explore the data
 - Subset, manipulate to pull out interesting observations
 - Plotting
 - Statistical testing
- Output the results

Variables and functions

- We can save the result of a computation as a variable using the assignment operator <-
- Calculations are done using functions

```
x <- sqrt(25)
```

x + 5

у <- х +5 У

[1] 10

Vectors

• A vector is often used to combine multiple values. The resulting object is indexed and particular values can be queried using the [] operator

vec <- c(1,2,3,6)
vec[1]</pre>

[1] 1

- The values can be numeric or text
 - but they must be all the same type

```
vec <- c("A"," B","C","D")
vec[1]</pre>
```

[1] "A"

Vectors

· Calculations can be performed on vectors

vec <- c(1,2,3,6)
vec+2</pre>

[1] 3 4 5 8

[1] 2 4 6 12

mean(vec)

[1] 3

sum(vec)

[1] 12

Data frames

- These can be used to represent familiar tabular (row and column) data
- Each column is a vector

df <- data.frame(A = c(1,2,3,6), B = c(7,8,10,12))
df</pre>

• Note that each row is named according to its index

• we can change this if we wish

Data frames

Don't need the same data type in each column

В	А		##
July	1	1	##
August	2	2	##
October	3	3	##
December	6	4	##

Getting data into R

- · Various functions can help to read tabular data into R as a data frame
 - read.csv , read.delim
 - also read.xls from gdata for Excel data
- Need to know the file path, or read from your working directory
- · Usually need to know something about the format of the data
 - comma / tab separated?
 - any header lines?
 - any lines to skip?
- Always check the data frame before proceeding
 - R may not throw an error, but the format might not be as you expect
 - head prints the first few lines
 - dim will print the dimensions

Data frames

Once we have imported our data into R, we can start to explore it

• We can subset data frames using the [], but need to specify row and column indices

[1] July

Levels: August December July October

df[2,1]

[1] 2

Data frames

Or leave the row or column index blank to get all rows and columns respectively

df[1,]
A B ## 1 1 July
df[,2]
[1] July August October December ## Levels: August December July October

Data frames

Can also subset using the column name - the result is a vector

df\$A

[1] 1 2 3 6

[1] July August October December
Levels: August December July October

Subsetting using vectors

- A vector of indices can be used to subset
- Various shortcuts to define this vector
 - c
 - : makes a sequence with start and end value
 - seq function can also be used
 - ?seq

df[c(1,2,3),]

## A B			
## 1 1 July			
## 2 2 August			
## 3 3 October			
df[1:3,]			
## A B			
## 1 1 July			
## 2 2 August			
## 3 3 October			

• In both cases, the result is a data frame

Plotting

- R is able to produce all types of graph that we are familiar with
- Example and capabilities can be seen using the example function (runs example code that is defined for the function)
 - scatter plot
 - example(plot)
 - bar plot
 - example(barplot)
 - boxplot
 - example(boxplot)
 - histogram
 - example(hist)
- A good overview on Quick-R (http://www.statmethods.net/graphs/index.html)
- Plots can be customised
 - colours, labels, adding additional points lines etc
 - layouts
- Plots can be exported in variety of formats

Simple plotting

x <- 1:10 y <- 2*x plot(x,y)

Simple plotting

x <- runif(100)
hist(x)</pre>

Histogram of x

Х

Simple plotting

Customising a plot

My Title

plot(x,y,xlab="My X label",ylab="My Y label"
 ,main="My Title",col="steelblue",pch=16,xlim=c(0,20))
points(x,x,col="red",pch=17)
grid()
abline(0,2,lty=2)
abline(0,1,lty=2)
text(12,10, label="y = x")
text(12,20, label="y = 2x")

Subsetting / filtering data etc

- R has various comparison operators
 - < , > , == , !=
- Each comparison gives a TRUE Or FALSE logical or boolean value

```
values <- rnorm(10)</pre>
```

values < 0

[1] FALSE TRUE FALSE TRUE TRUE TRUE TRUE TRUE TRUE TRUE

values > 0

[1] TRUE FALSE TRUE FALSE FALSE FALSE FALSE FALSE FALSE FALSE

Subsetting / filtering data etc

```
data <- data.frame(Counts = values, Name = rep(c("A","B")))
data</pre>
```

##		Counts	Name
##	1	1.0297018	А
##	2	-0.2027159	В
##	3	1.0352398	А
##	4	-2.1282385	В
##	5	-0.4212584	А
##	6	-0.3770134	В
##	7	-0.7827292	А
##	8	-0.3844247	В
##	9	-1.1625126	А
##	10	-2.0159132	В

```
data[values>0,]
```

Counts Name
1 1.029702 A
3 1.035240 A

Subsetting / filtering data etc

data\$Name == "A"

[1] TRUE FALSE TRUE FALSE TRUE FALSE TRUE FALSE TRUE FALSE

```
data[data$Name == "A",]
```

##		Counts	Name
##	1	1.0297018	A
##	3	1.0352398	A
##	5	-0.4212584	A
##	7	-0.7827292	A
##	9	-1.1625126	A

data[data\$Name !="A",]

 ##
 Counts
 Name

 ##
 2
 -0.2027159
 B

 ##
 4
 -2.1282385
 B

 ##
 6
 -0.3770134
 B

 ##
 8
 -0.3844247
 B

 ##
 10
 -2.0159132
 B

Subsetting / filtering data etc

• Logical vectors can be combined with a and when we want all tests, or any test, to be true

data\$Name == "A" & values > 0

[1] TRUE FALSE TRUE FALSE FALSE FALSE FALSE FALSE FALSE FALSE

data[data\$Name == "A" & values > 0,]

Counts Name
1 1.029702 A
3 1.035240 A

data\$Name == "A" | values > 0

[1] TRUE FALSE TRUE FALSE TRUE FALSE TRUE FALSE TRUE FALSE

```
data[data$Name == "A" | values > 0,]
```

Counts Name
1 1.0297018 A
3 1.0352398 A
5 -0.4212584 A
7 -0.7827292 A
9 -1.1625126 A

Conditional behaviour

A logical test can also dictate the behaviour of our code

```
if (some.condition.holds){
   do.this...
} else {
   do.this.instead.....
}
```

Example code

- · Often used in checking for errors and to give more informative messages to the user
- file.exists will return TRUE or FALSE if a specified file name could be found
- stop will stop and give a message to the user

```
if(file.exists(myfile)){
   data <- read.delim(myfile)
   ...rest of your code here...
   ...
} else{
    stop("Could not find input file")
}</pre>
```

Automating repetitive tasks

- For an analysis involving many steps, we really want to be writing an R script
- · Often we want to repeat the same procedure in the script
 - e.g. Histograms of various columns from a file

```
hist(data[,1])
hist(data[,2])
hist(data[,3])
....
```

· Note that each line of code is the same except for the column index

- Tedious if we have a large number of columns
- Prone to error

Using a for loop

• We can simplify this code to

hist(data[,i])

• Where i can be 1, 2, or 3.

Using a for loop

i <- 1
hist(data[,i])
i <- 2
hist(data[,i])
i <- 3
hist(data[,i])</pre>

Using a for loop

• A loop can defined as follows. The code inside the {} will be run for each value of i in turn

```
for(i in 1:3){
    hist(data[,i])
  }
```

Using a for loop

Multiple lines of code can be included in inside the

```
for(i in 1:3){
    ...process the data....
    hist(data[,i])
    ...customise the plot...
    ...export...
    ...etc...
}
```

R packages

- The standard download of R includes the basic functions for importing data, doing stats and plotting
- Anything fancier might require extra packages (of which there are 1000s)
- Most populated repository is CRAN: MetaCRAN (http://www.r-pkg.org/)
 - Task Views can narrow-down your search
- We will be mostly using Bioconductor (www.bioconductor.org)

Installing a package

- You need to install a package once per R version
- From CRAN

install.packages("your.package.name.here")

- From Bioconductor
 - will also install any packages that it *depends* on

```
source("http://www.bioconductor.org/biocLite.R")
biocLite("my.bioc.package")
```

• Every time you want to use the package, you need to use the library function

Why use R for High-Throughput Analysis? The Bioconductor project

- Packages analyse all kinds of Genomic data (>800)
- Compulsory documentation (vignettes) for each package
- 6-month release cycle
- Course Materials
- Example data and workflows
- · Common, re-usable framework and functionality
- Available Support (https://support.bioconductor.org/)

Example packages

Table 5: Citations for select Bioconductor software packages as captured by Google scholar in July, 2014. 'Citation' may be pubmed id.

Package	Citation	Ν	Package	Citation	Ν
limma	Smyth (2005)	2417	biomaRt	16082012	351
vsn	12169536	1463	affycomp	14960458	304
affy	14960456	1448	aCGH	16159913	287
xcms	16448051	1027	eisa	12689096	274
DESeq2	20979621	1669	MassSpecWavelet	16820428	249
edgeR	19910308	1110	beadarray	17586828	228
DNAcopy	15475419	1104	cellHTS2	16869968	183
globaltest	14693814	610	affylmGUI	16455752	150
lumi	18467348	685	made4	15797915	134
GOstats	17098774	587	tilingArray	16787969	124
limmaGUI	15297296	419	GEOquery	17496320	124

Downloading a package

Each package has its own landing page. e.g. http://bioconductor.org/packages/release/bioc/html/beadarray.html (http://bioconductor.org/packages/release/bioc/html/beadarray.html). Here you'll find;

- Installation script (will install all dependancies)
- Vignettes and manuals
- Details of package maintainer
- After downloading, you can load using the library function. e.g. library(beadarray)

Reading data using Bioconductor

Recall that data can be read into R using <u>read.csv</u>, <u>read.delim</u>, <u>read.table</u> etc. Several packages provided special modifications of these to read raw data from different manufacturers

- limma for various two-colour platforms
- affy for Affymetrix data
- beadarray, lumi, limma for Illumina BeadArray data

· A common class is used to represent the data

Reading data using Bioconductor

A dataset may be split into different components

- Matrix of expression values
- Sample information
- Annotation for the probes

In Bioconductor we will often put these data the same object for easy referencing. The Biobase package has all the code to do this.

Example data

- Biobase is the package that provide the infrastructure to represent microarray data
- Evaluating the name of the object does not print the whole object to screen

library(Biobase)

data(sample.ExpressionSet)
sample.ExpressionSet

```
## ExpressionSet (storageMode: lockedEnvironment)
```

assayData: 500 features, 26 samples

element names: exprs, se.exprs

- ## protocolData: none
- ## phenoData
- ## sampleNames: A B ... Z (26 total)
- ## varLabels: sex type score
- ## varMetadata: labelDescription
- ## featureData: none
- ## experimentData: use 'experimentData(object)'
- ## Annotation: hgu95av2

Extracting data

- Convenient accessor functions are provided
- Each row is a *gene*
- Each column is a *sample*

evals <- exprs(sample.ExpressionSet)
dim(evals)</pre>

[1] 500 26

evals[1:4,1:3]

##	A	В	С
## AFFX-MurIL2_at	192.7420	85.75330	176.7570
<pre>## AFFX-MurIL10_at</pre>	97.1370	126.19600	77.9216
## AFFX-MurIL4_at	45.8192	8.83135	33.0632
## AFFX-MurFAS_at	22.5445	3.60093	14.6883

Extracting data

- Note the rows in the sample information are in the same order as the columns in the expression matrix
- information about the sample in *column* 1 of the expression matrix is in *row* 1 of the pheno data

• etc

```
sampleMat <- pData(sample.ExpressionSet)
dim(sampleMat)</pre>
```

[1] 26 3

head(sampleMat)

sex type score ## A Female Control 0.75 ## B Male Case 0.40 ## C Male Control 0.73 ## D Male Case 0.42 ## E Female Case 0.93 ## F Male Control 0.22

Subsetting rules

ExpressionSet objects are designed to behave like data frames. e.g. to subset the first 10 genes

```
sample.ExpressionSet[1:10,]
```

```
## ExpressionSet (storageMode: lockedEnvironment)
```

```
## assayData: 10 features, 26 samples
```

```
## element names: exprs, se.exprs
```

```
## protocolData: none
```

```
## phenoData
```

```
## sampleNames: A B ... Z (26 total)
```

```
## varLabels: sex type score
```

```
## varMetadata: labelDescription
```

featureData: none

```
## experimentData: use 'experimentData(object)'
```

Annotation: hgu95av2

Subsetting rules

What does this do?

```
sample.ExpressionSet[,1:10]
```

```
## ExpressionSet (storageMode: lockedEnvironment)
```

assayData: 500 features, 10 samples

- ## element names: exprs, se.exprs
- ## protocolData: none
- ## phenoData
- ## sampleNames: A B ... J (10 total)
- ## varLabels: sex type score
- ## varMetadata: labelDescription
- ## featureData: none
- ## experimentData: use 'experimentData(object)'
- ## Annotation: hgu95av2

Subsetting rules

males <- sampleMat[,1] == "Male"
sample.ExpressionSet[,males]</pre>

```
## ExpressionSet (storageMode: lockedEnvironment)
## assayData: 500 features, 15 samples
```

- ## element names: exprs, se.exprs
- ## protocolData: none
- ## phenoData
- ## sampleNames: B C ... X (15 total)
- ## varLabels: sex type score
- ## varMetadata: labelDescription
- ## featureData: none
- ## experimentData: use 'experimentData(object)'
- ## Annotation: hgu95av2

maleData <- sample.ExpressionSet[,males]</pre>

Subsetting rules

```
sample.ExpressionSet[,
        sampleMat$score < 0.5</pre>
        1
## ExpressionSet (storageMode: lockedEnvironment)
## assayData: 500 features, 14 samples
    element names: exprs, se.exprs
##
## protocolData: none
## phenoData
    sampleNames: B D ... Z (14 total)
##
##
    varLabels: sex type score
    varMetadata: labelDescription
##
## featureData: none
## experimentData: use 'experimentData(object)'
## Annotation: hgu95av2
```

Starting to visualise the data

Recall that several plots can be created from a vector of numerical values

hist(evals[,1])

Histogram of evals[, 1]

Starting to visualise the data

Or from a data frame

boxplot(evals[,1:5])

Starting to visualise the data

One sample against another

plot(evals[,1],evals[,2])

Starting to visualise the data

One gene against another

plot(evals[1,],evals[2,])

The MA plot

We often work with **M** and **A** values as defined

```
M <- log2(evals[,1]) - log2(evals[,2])
A <- 0.5*(log2(evals[,1]) + log2(evals[,2]))
plot(A,M)</pre>
```


The MA plot

- log transformation is used to put values on scale 0 to 16
- Line *M*=0 indicates equivalent expression in two arrays
 where we would expect most genes to be
- Outliers on y axis are candidates to be differentially expressed

Statistical Testing

- R started as a language for statisticians, made by statisticians
- naturally, it has a whole range of statistical tests available as functions
 - t.test
 - wilcox.test
 - var.test
 - anova
 - etc.....

Statistical Testing

mygene

##	A	В	C	D	E	F
##	11.069500	-26.100600	14.165500	8.759730	4.473810	9.857120
##	G	н	I	J	K	L
##	2.129690	-3.160350	23.917000	8.841620	-13.306100	6.991630
##	М	N	0	Р	Q	R
##	4.625380	-7.571780	23.905600	11.327000	10.738700	12.639800
##	S	т	U	V	W	х
##	9.737230	12.834800	-0.203757	22.000500	12.463800	2.936350
##	У	Z				
##	10.891500	12.021200				

myfactor

[1] Female Male Male Male Male Female Male Male Male Female Male
[11] Male Female Male Male Female Female Female Male Male Female
[21] Male Female Male Male Female Female Female
Levels: Female Male

Statistical Testing

The *tilde* (~) is R's way of creating a *formula*

boxplot(mygene~myfactor)

Statistical Testing

t.test(mygene~myfactor)

```
##
## Welch Two Sample t-test
##
## data: mygene by myfactor
## t = 3.215, df = 23.216, p-value = 0.003808
## alternative hypothesis: true difference in means is not equal to 0
## 95 percent confidence interval:
## 4.020114 18.508597
## sample estimates:
## mean in group Female mean in group Male
## 13.651931 2.387576
```

· we need to be wary of multiple-testing issues

Biological Interpretation of Results

- · Bioconductor provide a number of annotation packages
 - e.g. hgu95av2.db which can be installed in the same manner as other Bioconductor packages
 - can map between manufacturer ID more-familiar IDs
 - can map to pathways ontologies
 - using the latest database versions etc

library(hgu95av2.db)

mget("31553_at",hgu95av2SYMBOL)

\$`31553_at`

[1] "ZNF460"

mget("31553_at",hgu95av2ENTREZID)

\$`31553_at`

[1] "10794"

[1] "CC"

\$`31553_at`\$`GO:0005634`\$Ontology

##

[1] "IEA"

\$`31553_at`\$`GO:0005634`\$Evidence

##

[1] "GO:0005634"

\$`31553_at`\$`GO:0005634`\$GOID

\$`31553_at`\$`GO:0005634`

##

##

[1] "BP"

\$`31553_at`\$`GO:0006355`\$Ontology

##

[1] "IEA"

\$`31553 at`\$`GO:0006355`\$Evidence

##

[1] "GO:0006355"

\$`31553_at`\$`GO:0006355`\$GOID

\$`31553_at`\$`GO:0006355`

##

##

[1] "BP"

\$`31553_at`\$`GO:0006351`\$Ontology

##

[1] "IEA"

\$`31553_at`\$`GO:0006351`\$Evidence

##

[1] "GO:0006351"

\$`31553_at`\$`GO:0006351`\$GOID

\$`31553_at`\$`GO:0006351`

\$`31553_at`

mget("31553_at",hgu95av2GO)

##

[1] "GO:0046872"

\$`31553 at`\$`GO:0046872`\$GOID

\$`31553_at`\$`GO:0046872`\$Evidence

\$`31553_at`\$`GO:0046872`

##

[1] "MF"

\$`31553_at`\$`GO:0003677`\$Ontology

##

[1] "IEA"

\$`31553_at`\$`GO:0003677`\$Evidence

##

[1] "GO:0003677"

\$`31553_at`\$`GO:0003677`\$GOID

\$`31553_at`\$`GO:0003677`

##

Introducing the practical

- Refresh your memory of R skills
 - reading data
 - subsetting data
 - plotting
- Introduce some Bioconductor classes