
Course Introduction
Mark Dunning
27/07/2015

Welcome!
About us

Admin at CRUK
Victoria, Helen

Genetics
Paul, Gabry, Cathy

Thanks to Cancer Research Uk!

Admin
Lunch, tea / coffee breaks provided

Workshop dinner on Thursday @ Downing College
no other evening meals

wifi passwords available
Course Materials

http://bioinformatics-core-shared-training.github.io/cruk-bioinf-sschool/ (http://bioinformatics-core-shared-training.github.io/cruk-bioinf-
sschool/)
and on the computers at your desk

Anything else, just ask!

About the Course
We will tell about ‘best practice’ tools that we use in daily work as Bioinformaticians
You will (probably) not come away being an expert
We cannot teach you everything about NGS data

plus, it is a fast-moving field
RNA and ChIP only

much of the initial processing is the same for other assays
However, we hope that you will

Understand how your data are processed
Be able to explore your data - no programming required
Increase confidence with R and Bioconductor
Be able to explore new technologies, methods, tools as they come out

Further disclaimer
You’ll probably see this quote in every stats course you go to

http://bioinformatics-core-shared-training.github.io/cruk-bioinf-sschool/

To consult the statistician after an experiment is finished is often merely to ask him to conduct a post mortem examination.
He can perhaps say what the experiment died of.”. R.A. Fisher, 1938

If you haven’t designed your experiment properly, then all the Bioinformatics we teach you won’t help: Make friends with your local statistician

Course Outline
Day 1

Recap of R
Introduce the Bioconductor project
Hands-on experience with NGS data

IGV
FastQC
Alignment

Day 2

Data structures for NGS analysis in R
Statistical theory behind RNA-seq analysis
RNA-seq intro
Aligning and counting for RNA-seq

Day 3
Differential expression analysis for RNA-seq
Annotating RNA-seq results
Using Genome Browsers

Day 4
Downstream analysis of RNA-seq
Intro to ChIP-seq
QA and analysis of ChIP data
Gala Dinner

Day 5
Downstream analysis of ChIP-seq
Reproducible Research
Invited Talks

Jonathan Cairns
Peter Van Loo

End of course :(

Crash-course in R
Support for R

Online forums
Local user groups
Documentation via ? or help.start()

browseVignettes() to see package user guides (‘vignettes’)
Get into the habit of using these

or google

RStudio

Rstudio is a free environment for R
Convenient menus to access scripts, display plots
Still need to use command-line to get things done
Developed by some of the leading R programmers

Typical tasks in an R analysis
Read some data from a .csv or .txt file

R creates some representation of the data
Explore the data

Subset, manipulate to pull out interesting observations
Plotting
Statistical testing

Output the results

Variables and functions
We can save the result of a computation as a variable using the assignment operator <-
Calculations are done using functions

x <- sqrt(25)

x + 5

[1] 10

y <- x +5

y

[1] 10

Vectors
A vector is often used to combine multiple values. The resulting object is indexed and particular values can be queried using the [] operator

vec <- c(1,2,3,6)

vec[1]

[1] 1

The values can be numeric or text
but they must be all the same type

vec <- c("A"," B","C","D")

vec[1]

[1] "A"

Vectors
Calculations can be performed on vectors

vec <- c(1,2,3,6)

vec+2

[1] 3 4 5 8

vec*2

[1] 2 4 6 12

mean(vec)

[1] 3

sum(vec)

[1] 12

Data frames
These can be used to represent familiar tabular (row and column) data
Each column is a vector

df <- data.frame(A = c(1,2,3,6), B = c(7,8,10,12))

df

A B

1 1 7

2 2 8

3 3 10

4 6 12

Note that each row is named according to its index
we can change this if we wish

Data frames

Don’t need the same data type in each column

df <- data.frame(A = c(1,2,3,6),

 B = month.name[c(7,8,10,12)])

df

A B

1 1 July

2 2 August

3 3 October

4 6 December

Getting data into R
Various functions can help to read tabular data into R as a data frame

read.csv, read.delim
also read.xls from gdata for Excel data

Need to know the file path, or read from your working directory
Usually need to know something about the format of the data

comma / tab separated?
any header lines?
any lines to skip?

Always check the data frame before proceeding
R may not throw an error, but the format might not be as you expect
head prints the first few lines
dim will print the dimensions

Data frames
Once we have imported our data into R, we can start to explore it

We can subset data frames using the [], but need to specify row and column indices

df[1,2]

[1] July

Levels: August December July October

df[2,1]

[1] 2

Data frames
Or leave the row or column index blank to get all rows and columns respectively

df[1,]

A B

1 1 July

df[,2]

[1] July August October December

Levels: August December July October

Data frames
Can also subset using the column name - the result is a vector

df$A

[1] 1 2 3 6

df$B

[1] July August October December

Levels: August December July October

Subsetting using vectors
A vector of indices can be used to subset
Various shortcuts to define this vector

c

: makes a sequence with start and end value
seq function can also be used

?seq

df[c(1,2,3),]

A B

1 1 July

2 2 August

3 3 October

df[1:3,]

A B

1 1 July

2 2 August

3 3 October

In both cases, the result is a data frame

Plotting

R is able to produce all types of graph that we are familiar with
Example and capabilities can be seen using the example function (runs example code that is defined for the function)

scatter plot
example(plot)

bar plot
example(barplot)

boxplot
example(boxplot)

histogram
example(hist)

A good overview on Quick-R (http://www.statmethods.net/graphs/index.html)
Plots can be customised

colours, labels, adding additional points lines etc
layouts

Plots can be exported in variety of formats

Simple plotting
x <- 1:10

y <- 2*x

plot(x,y)

http://www.statmethods.net/graphs/index.html

Simple plotting
x <- runif(100)

hist(x)

Simple plotting
dd <- data.frame(A=rnorm(100, mean = 2),

 B = rnorm(100, mean=5))

boxplot(dd)

Customising a plot

plot(x,y,xlab="My X label",ylab="My Y label"

 ,main="My Title",col="steelblue",pch=16,xlim=c(0,20))

points(x,x,col="red",pch=17)

grid()

abline(0,2,lty=2)

abline(0,1,lty=2)

text(12,10, label="y = x")

text(12,20, label="y = 2x")

Subsetting / filtering data etc
R has various comparison operators

<, >, ==, !=
Each comparison gives a TRUE or FALSE logical or boolean value

values <- rnorm(10)

values < 0

[1] FALSE TRUE FALSE TRUE TRUE TRUE TRUE TRUE TRUE TRUE

values > 0

[1] TRUE FALSE TRUE FALSE FALSE FALSE FALSE FALSE FALSE FALSE

Subsetting / filtering data etc
data <- data.frame(Counts = values, Name = rep(c("A","B")))

data

Counts Name

1 1.0297018 A

2 -0.2027159 B

3 1.0352398 A

4 -2.1282385 B

5 -0.4212584 A

6 -0.3770134 B

7 -0.7827292 A

8 -0.3844247 B

9 -1.1625126 A

10 -2.0159132 B

data[values>0,]

Counts Name

1 1.029702 A

3 1.035240 A

Subsetting / filtering data etc
data$Name == "A"

[1] TRUE FALSE TRUE FALSE TRUE FALSE TRUE FALSE TRUE FALSE

data[data$Name == "A",]

Counts Name

1 1.0297018 A

3 1.0352398 A

5 -0.4212584 A

7 -0.7827292 A

9 -1.1625126 A

data[data$Name !="A",]

Counts Name

2 -0.2027159 B

4 -2.1282385 B

6 -0.3770134 B

8 -0.3844247 B

10 -2.0159132 B

Subsetting / filtering data etc
Logical vectors can be combined with & and | when we want all tests, or any test, to be true

data$Name == "A" & values > 0

[1] TRUE FALSE TRUE FALSE FALSE FALSE FALSE FALSE FALSE FALSE

data[data$Name == "A" & values > 0,]

Counts Name

1 1.029702 A

3 1.035240 A

data$Name == "A" | values > 0

[1] TRUE FALSE TRUE FALSE TRUE FALSE TRUE FALSE TRUE FALSE

data[data$Name == "A" | values > 0,]

Counts Name

1 1.0297018 A

3 1.0352398 A

5 -0.4212584 A

7 -0.7827292 A

9 -1.1625126 A

Conditional behaviour
A logical test can also dictate the behaviour of our code

we use the if / else syntax

if (some.condition.holds){

 do.this...

} else {

 do.this.instead.....

}

Example code
Often used in checking for errors and to give more informative messages to the user
file.exists will return TRUE or FALSE if a specified file name could be found
stop will stop and give a message to the user

if(file.exists(myfile)){

 data <- read.delim(myfile)

 ...rest of your code here...

 ...

} else{

 stop("Could not find input file")

}

Automating repetitive tasks
For an analysis involving many steps, we really want to be writing an R script
Often we want to repeat the same procedure in the script

e.g. Histograms of various columns from a file

hist(data[,1])

hist(data[,2])

hist(data[,3])

....

Note that each line of code is the same except for the column index

Tedious if we have a large number of columns
Prone to error

Using a for loop
We can simplify this code to

hist(data[,i])

Where i can be 1, 2, or 3.

Using a for loop
i <- 1

hist(data[,i])

i <- 2

hist(data[,i])

i <- 3

hist(data[,i])

Using a for loop
A loop can defined as follows. The code inside the {} will be run for each value of i in turn

for(i in 1:3){

 hist(data[,i])

 }

Using a for loop
Multiple lines of code can be included in inside the {}

for(i in 1:3){

 ...process the data....

 hist(data[,i])

 ...customise the plot...

 ...export...

 ...etc...

 }

R packages
The standard download of R includes the basic functions for importing data, doing stats and plotting
Anything fancier might require extra packages (of which there are 1000s)
Most populated repository is CRAN: MetaCRAN (http://www.r-pkg.org/)

Task Views can narrow-down your search
We will be mostly using Bioconductor (www.bioconductor.org)

Installing a package
You need to install a package once per R version
From CRAN

install.packages("your.package.name.here")

From Bioconductor
will also install any packages that it depends on

source("http://www.bioconductor.org/biocLite.R")

biocLite("my.bioc.package")

Every time you want to use the package, you need to use the library function

http://www.r-pkg.org/
file://localhost/Users/dunnin01/work/git/course-intro/www.bioconductor.org

library(your.package.name.here)

library(my.bioc.package)

Why use R for High-Throughput Analysis?
The Bioconductor project

Packages analyse all kinds of Genomic data (>800)
Compulsory documentation (vignettes) for each package
6-month release cycle
Course Materials
Example data and workflows
Common, re-usable framework and functionality
Available Support (https://support.bioconductor.org/)

Example packages

https://support.bioconductor.org/

Downloading a package
Each package has its own landing page. e.g. http://bioconductor.org/packages/release/bioc/html/beadarray.html
(http://bioconductor.org/packages/release/bioc/html/beadarray.html). Here you’ll find;

Installation script (will install all dependancies)
Vignettes and manuals
Details of package maintainer
After downloading, you can load using the library function. e.g. library(beadarray)

Reading data using Bioconductor
Recall that data can be read into R using read.csv, read.delim, read.table etc. Several packages provided special modifications of these to
read raw data from different manufacturers

limma for various two-colour platforms
affy for Affymetrix data
beadarray, lumi, limma for Illumina BeadArray data

http://bioconductor.org/packages/release/bioc/html/beadarray.html

A common class is used to represent the data

Reading data using Bioconductor
A dataset may be split into different components

Matrix of expression values
Sample information
Annotation for the probes

In Bioconductor we will often put these data the same object for easy referencing. The Biobase package has all the code to do this.

Example data
Biobase is the package that provide the infrastructure to represent microarray data
Evaluating the name of the object does not print the whole object to screen

library(Biobase)

data(sample.ExpressionSet)

sample.ExpressionSet

ExpressionSet (storageMode: lockedEnvironment)

assayData: 500 features, 26 samples

element names: exprs, se.exprs

protocolData: none

phenoData

sampleNames: A B ... Z (26 total)

varLabels: sex type score

varMetadata: labelDescription

featureData: none

experimentData: use 'experimentData(object)'

Annotation: hgu95av2

Extracting data

Convenient accessor functions are provided
Each row is a gene
Each column is a sample

evals <- exprs(sample.ExpressionSet)

dim(evals)

[1] 500 26

evals[1:4,1:3]

A B C

AFFX-MurIL2_at 192.7420 85.75330 176.7570

AFFX-MurIL10_at 97.1370 126.19600 77.9216

AFFX-MurIL4_at 45.8192 8.83135 33.0632

AFFX-MurFAS_at 22.5445 3.60093 14.6883

Extracting data
Note the rows in the sample information are in the same order as the columns in the expression matrix
information about the sample in column 1 of the expression matrix is in row 1 of the pheno data
etc

sampleMat <- pData(sample.ExpressionSet)

dim(sampleMat)

[1] 26 3

head(sampleMat)

sex type score

A Female Control 0.75

B Male Case 0.40

C Male Control 0.73

D Male Case 0.42

E Female Case 0.93

F Male Control 0.22

Subsetting rules
ExpressionSet objects are designed to behave like data frames. e.g. to subset the first 10 genes

sample.ExpressionSet[1:10,]

ExpressionSet (storageMode: lockedEnvironment)

assayData: 10 features, 26 samples

element names: exprs, se.exprs

protocolData: none

phenoData

sampleNames: A B ... Z (26 total)

varLabels: sex type score

varMetadata: labelDescription

featureData: none

experimentData: use 'experimentData(object)'

Annotation: hgu95av2

Subsetting rules
What does this do?

sample.ExpressionSet[,1:10]

ExpressionSet (storageMode: lockedEnvironment)

assayData: 500 features, 10 samples

element names: exprs, se.exprs

protocolData: none

phenoData

sampleNames: A B ... J (10 total)

varLabels: sex type score

varMetadata: labelDescription

featureData: none

experimentData: use 'experimentData(object)'

Annotation: hgu95av2

Subsetting rules
males <- sampleMat[,1] == "Male"

sample.ExpressionSet[,males]

ExpressionSet (storageMode: lockedEnvironment)

assayData: 500 features, 15 samples

element names: exprs, se.exprs

protocolData: none

phenoData

sampleNames: B C ... X (15 total)

varLabels: sex type score

varMetadata: labelDescription

featureData: none

experimentData: use 'experimentData(object)'

Annotation: hgu95av2

maleData <- sample.ExpressionSet[,males]

Subsetting rules
sample.ExpressionSet[,

 sampleMat$score < 0.5

]

ExpressionSet (storageMode: lockedEnvironment)

assayData: 500 features, 14 samples

element names: exprs, se.exprs

protocolData: none

phenoData

sampleNames: B D ... Z (14 total)

varLabels: sex type score

varMetadata: labelDescription

featureData: none

experimentData: use 'experimentData(object)'

Annotation: hgu95av2

Starting to visualise the data
Recall that several plots can be created from a vector of numerical values

hist(evals[,1])

Starting to visualise the data
Or from a data frame

boxplot(evals[,1:5])

Starting to visualise the data
One sample against another

plot(evals[,1],evals[,2])

Starting to visualise the data
One gene against another

plot(evals[1,],evals[2,])

The MA plot
We often work with M and A values as defined

M <- log2(evals[,1]) - log2(evals[,2])

A <- 0.5*(log2(evals[,1]) + log2(evals[,2]))

plot(A,M)

The MA plot
log transformation is used to put values on scale 0 to 16
Line M=0 indicates equivalent expression in two arrays

where we would expect most genes to be
Outliers on y axis are candidates to be differentially expressed

Statistical Testing
R started as a language for statisticians, made by statisticians

naturally, it has a whole range of statistical tests available as functions
t.test

wilcox.test

var.test

anova

etc…..

Statistical Testing
mygene

A B C D E F

11.069500 -26.100600 14.165500 8.759730 4.473810 9.857120

G H I J K L

2.129690 -3.160350 23.917000 8.841620 -13.306100 6.991630

M N O P Q R

4.625380 -7.571780 23.905600 11.327000 10.738700 12.639800

S T U V W X

9.737230 12.834800 -0.203757 22.000500 12.463800 2.936350

Y Z

10.891500 12.021200

myfactor

[1] Female Male Male Male Female Male Male Male Female Male

[11] Male Female Male Male Female Female Female Male Male Female

[21] Male Female Male Male Female Female

Levels: Female Male

Statistical Testing
The tilde (~) is R’s way of creating a formula

boxplot(mygene~myfactor)

Statistical Testing
t.test(mygene~myfactor)

Welch Two Sample t-test

data: mygene by myfactor

t = 3.215, df = 23.216, p-value = 0.003808

alternative hypothesis: true difference in means is not equal to 0

95 percent confidence interval:

4.020114 18.508597

sample estimates:

mean in group Female mean in group Male

13.651931 2.387576

we need to be wary of multiple-testing issues

Biological Interpretation of Results
Bioconductor provide a number of annotation packages

e.g. hgu95av2.db which can be installed in the same manner as other Bioconductor packages
can map between manufacturer ID more-familiar IDs
can map to pathways ontologies

using the latest database versions etc

library(hgu95av2.db)

mget("31553_at",hgu95av2SYMBOL)

$̀31553_at̀

[1] "ZNF460"

mget("31553_at",hgu95av2ENTREZID)

$̀31553_at̀

[1] "10794"

mget("31553_at",hgu95av2GO)

$̀31553_at̀

$̀31553_at̀ $̀GO:0006351̀

$̀31553_at̀ $̀GO:0006351̀$GOID

[1] "GO:0006351"

$̀31553_at̀ $̀GO:0006351̀$Evidence

[1] "IEA"

$̀31553_at̀ $̀GO:0006351̀$Ontology

[1] "BP"

$̀31553_at̀ $̀GO:0006355̀

$̀31553_at̀ $̀GO:0006355̀$GOID

[1] "GO:0006355"

$̀31553_at̀ $̀GO:0006355̀$Evidence

[1] "IEA"

$̀31553_at̀ $̀GO:0006355̀$Ontology

[1] "BP"

$̀31553_at̀ $̀GO:0005634̀

$̀31553_at̀ $̀GO:0005634̀$GOID

[1] "GO:0005634"

$̀31553_at̀ $̀GO:0005634̀$Evidence

[1] "IEA"

$̀31553_at̀ $̀GO:0005634̀$Ontology

[1] "CC"

$̀31553_at̀ $̀GO:0003677̀

$̀31553_at̀ $̀GO:0003677̀$GOID

[1] "GO:0003677"

$̀31553_at̀ $̀GO:0003677̀$Evidence

[1] "IEA"

$̀31553_at̀ $̀GO:0003677̀$Ontology

[1] "MF"

$̀31553_at̀ $̀GO:0046872̀

$̀31553_at̀ $̀GO:0046872̀$GOID

[1] "GO:0046872"

$̀31553_at̀ $̀GO:0046872̀$Evidence

[1] "IEA"

$̀31553_at̀ $̀GO:0046872̀$Ontology

[1] "MF"

$̀31553_at̀ $̀GO:0005515̀

$̀31553_at̀ $̀GO:0005515̀$GOID

[1] "GO:0005515"

$̀31553_at̀ $̀GO:0005515̀$Evidence

[1] "IPI"

$̀31553_at̀ $̀GO:0005515̀$Ontology

[1] "MF"

Introducing the practical
Refresh your memory of R skills

reading data
subsetting data
plotting

Introduce some Bioconductor classes

